nebraska election forecast

Nebraska Primary Election Forecast

Today voters will go to the polls in Nebraska to determine who will represent their party.  PoliticIt has applied the It Score algorithm to find out who the likely representatives will be.

The It Score is a measure of a digital influence that correlates with election results (GigaOM).

The score was used in the 2012 election to correctly predict the outcomes of every major federal race with 92% accuracy, and it correctly predicted every race in the most recent Utah conventions.

If a candidate has a higher It Score relative to their opponent then they will likely win.

Scores for candidates running against each other are calculated on a relative basis.  An asterisk next to a candidate’s name indicates that they lack sufficient data to calculate an accurate score.

Methodology for its calculation is contained at this end of this article.

Gubernatorial Race

Republican candidates:

Candidate It Score
Jon Bruning 17%
Tom Carlson 19%
Mike Foley 21%
Beau McCoy 15%
Pete Ricketts* 20%
Bryan Slone* 8%

This race is far too close to call.  It Score says Foley has the highest probability of winning, but it could easily go to Ricketts.

Attorney General

Republican candidates:

Candidate It Score
Brian Buescher* 26%
Doug Peterson* 24%
Mike Hilgers* 27%
Pete Pirsch* 23%


This is another really close race.  All of the candidates lack sufficient data to generate a completely accurate score.  As it stands…the It Score is predicting a victory for Mike Hilgers.

State Auditor

Republican candidates:

Candidate It Score
Larry Anderson* 36%
Charlie Janssen* 64%


Charlie Janssen will likely win.

U.S. Senate

Republican candidates:

Candidate It Score
Sid Dinsdale* 26%
Clifton Johnson* 3%
Bart McLeay* 12%
Shane Osborn 28%
Ben Sasse 31%

Ben Sasse will likely win the nomination.

District 2

Republican candidates:

Candidate It Score
Lee Terry 82%
Dan Frei* 18%

Terry will likely win the nomination.

District 3

Republican candidates:

Candidate It Score
Adrian Smith 58%
Tom Brewer* 42%


Some races were omitted completely.  This was due to insufficient data.

The It Score is a machine learning algorithm that gathers chatter surrounding a political candidate from social, and traditional media sources in order to provide a gauge of their digital influence.  It accounts for tone, how people are reacting to a politician, the buzz surrounding the candidate, and what people are saying about the politician.

Whatever candidate has the highest It Score will likely win in the election.

The machine learning algorithm was trained off of actual primary election results.  The original algorithm was predicting at 67% accuracy, but overtime it learned.  Currently it is predicting at 92% accuracy, and has a standard error of 5.

One limitation the algorithm faces is it’s inability to predict races where candidates lack a presence online.  PoliticIt omits these races because there is insufficient data.

PoliticIt’s hope is to refine this algorithm so that political candidates can use it to receive real-time feedback on campaign performance.

(Photo Credit: Flickr via Sarah (Rosenau) Korf)

Share this article